Heat generates oxidized linoleic acid metabolites that activate TRPV1 and produce pain in rodents.
نویسندگان
چکیده
The transient receptor potential vanilloid 1 (TRPV1) channel is the principal detector of noxious heat in the peripheral nervous system. TRPV1 is expressed in many nociceptors and is involved in heat-induced hyperalgesia and thermoregulation. The precise mechanism or mechanisms mediating the thermal sensitivity of TRPV1 are unknown. Here, we have shown that the oxidized linoleic acid metabolites 9- and 13-hydroxyoctadecadienoic acid (9- and 13-HODE) are formed in mouse and rat skin biopsies by exposure to noxious heat. 9- and 13-HODE and their metabolites, 9- and 13-oxoODE, activated TRPV1 and therefore constitute a family of endogenous TRPV1 agonists. Moreover, blocking these substances substantially decreased the heat sensitivity of TRPV1 in rats and mice and reduced nociception. Collectively, our results indicate that HODEs contribute to the heat sensitivity of TRPV1 in rodents. Because oxidized linoleic acid metabolites are released during cell injury, these findings suggest a mechanism for integrating the hyperalgesic and proinflammatory roles of TRPV1 and linoleic acid metabolites and may provide the foundation for investigating new classes of analgesic drugs.
منابع مشابه
The cytochrome P450 inhibitor, ketoconazole, inhibits oxidized linoleic acid metabolite-mediated peripheral inflammatory pain
BACKGROUND Oxidized linoleic acid metabolites (OLAMs) are a class of endogenous agonists to the transient receptor potential V1 (TRPV1) receptor. Although TRPV1 mediates inflammatory heat hyperalgesia, it is not known if the OLAMs contribute to the peripheral activation of this receptor during tissue inflammation. In the present study, we evaluated whether the OLAM system is activated during in...
متن کاملCentral activation of TRPV1 and TRPA1 by novel endogenous agonists contributes to mechanical and thermal allodynia after burn injury
The primary complaint of burn victims is an intense, often devastating spontaneous pain, with persistence of mechanical and thermal allodynia. The transient receptor potential channels, TRPV1 and TRPA1, are expressed by a subset of nociceptive sensory neurons and contribute to inflammatory hypersensitivity. Although their function in the periphery is well known, a role for these TRP channels in...
متن کاملHigh-concentration capsaicin patch (qutenza) - a new step in treatment of neuropathic pain.
T he diagnosis and the management of neuropathic pain still remain challenging. The main reason for these is the variety of underlying mechanisms of neuropathic pain. Different treatment regimens are needed for different pain mechanisms, thereby a mechanism based treatment approach would result in efficient analgesia. It is worth to mention that the pain system is not static and the changes occ...
متن کاملPersistent Nociception Triggered by Nerve Growth Factor (NGF) Is Mediated by TRPV1 and Oxidative Mechanisms.
Nerve growth factor (NGF) is elevated in certain chronic pain conditions and is a sufficient stimulus to cause lasting pain in humans, but the actual mechanisms underlying the persistent effects of NGF remain incompletely understood. We developed a rat model of NGF-induced persistent thermal hyperalgesia and mechanical allodynia to determine the role of transient receptor potential vanilloid 1 ...
متن کاملThe vanilloid receptor TRPV1 is tonically activated in vivo and involved in body temperature regulation.
The vanilloid receptor TRPV1 (transient receptor potential vanilloid 1) is a cation channel that serves as a polymodal detector of pain-producing stimuli such as capsaicin, protons (pH <5.7), and heat. TRPV1 antagonists block pain behaviors in rodent models of inflammatory, neuropathic, and cancer pain, suggesting their utility as analgesics. Here, we report that TRPV1 antagonists representing ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of clinical investigation
دوره 120 5 شماره
صفحات -
تاریخ انتشار 2010